Development of Remedial Goals for Coal-Ash Associated Arsenic and Selenium in Support of Long-Term Site Monitoring

global expertise

applied locally

Amber Stojak

D. Ludwig; D. Jones; C. Meyer; T. Schlekat, S. Walls (ARCADIS)

N. Carriker; R. Sherrard (TVA)

© 2013 ARCADIS

Introduction

Ash is a by-product of coalfired power plants

- Primarily comprised of aluminosilicate spheres
- Various metals occur naturally in the coal

Ash Migration

- Ash initially traveled upriver to Emory River mile (ERM) 5.75
- Ash was transported into the Clinch River
- Subsequent high flow events transported it downriver into the Tennessee River

CERCLA Strategy

Image: EPA SETAC 2010.

Time Critical Removal

- Hydraulic and mechanical dredging
- Emory River reopened May 2010

Non-time Critical Removal:

- Embayments/Dredge Cell
 - Remove ash from embayments
 - Construct containment system
- River system residual ash study:
 - HHRA
 - -BERA
 - EE/CA and Remedial Goals

Ecological Risk Assessment

 The Baseline Ecological Risk Assessment (BERA) assessed potential effects of the ash release on ecological receptors in the river system

- Evaluated effects of postdredging conditions
- Downstream of ERM 1.8 was not dredged due to legacy cesium-137

Ecological Receptors

- Aquatic plants
- Pelagic fish
- Benthic fish
- Benthic invertebrates
- Aquatic- or riparian-feeding birds
 - Herbivores (wood duck)
 - Omnivores (mallard; killdeer)
 - Piscivores (osprey; great blue heron)
- Aquatic- or riparian-feeding mammals
 - Herbivores (muskrat)
 - Omnivores (raccoon)
 - Piscivores (mink)
- Aerial-feeding insectivores
 - Birds (tree swallow)
 - Mammals (gray bat)
- Aquatic- or riparian-feeding reptiles
- Aquatic- or riparian-feeding amphibians

© 2013 ARCADIS

Receptors	Potential Risk	Confidence in Risk Determination	Risk Management Recommended?	COECs
Fish	Ø	Moderate		
Jenthic Invertebrates	(ER) (CR)	High	✓	As, Se, Ash
Aquatic Vegetation	0	Moderate		
Birds				
Piscivore - Heron	Ø	Moderate		
Piscivore - Osprey	Ø	Moderate		
Insectivore - Killdeer	0	Low	√	As, Se
Omnivore - Mallard	O	Moderate		
Herbivore - Wood Duck	Ø	Moderate		
Aerial Insectivore - Tree Swallow	0	Moderate	√	Se
Mammals				
Carnivore - Mink	0	Low		
Omnivore - Raccoon	Ŏ O	Low		
Herbivore- Muskrat	Ø	Low		
Aerial Insectivore - Gray Bat	0	Low		
Amphibians				
American Toad, Spring Peeper and Chorus Frogs	Ø	Moderate		
Reptiles				
Musk, Snapping, and Softshell Turtles	Ø	Moderate		
	low; 👄 risks are	moderate; = risks ar	re high; 🗸 risk manageme	ent is recommend

Remedial Goals Based on BERA Results

- Remedial goals (RGs) for sediment provide goals for the selected remedy (monitored natural attenuation)
- Set targets for meeting primary ecological endpoints
- RGs developed for ash, arsenic, and selenium
- Set targets based on results from:
 - Sediment toxicity tests
 - Dietary exposure models

Benthic Invertebrates

- Community Surveys
- Sediment Toxicity Tests
- Invertebrate Tissue
- Abiotic Media

Remedial Goals

TVA Tiered Sediment Toxicity Test Design

[Tests Conducted in Accordance with EPA 2000 and ASTM 2010]

Sediment from 18 areas in Emory and Clinch Rivers

- Screening sites
 selected based on: ash
 content; samples in each
 reach; grain sizes
- Long-Term sites selected based on: Sites with greatest observed effects in screening

Arsenic Correlated with Ash

Statistical Correlations - Pearson's

Analytes	Ash	C. dilutus IC ₂₅ Survival	C. dilutus IC ₂₅ Emergence	H. azteca IC ₂₅ Survival	H. azteca IC ₂₅ Biomass
Ash	1.00	-0.81	-0.77	-0.95	-0.76
Arsenic	0.89	-0.83	-0.79	-0.91	-0.78
Arsenate	0.81	-0.80	-0.77	-0.99	-0.74
Arsenite	0.76	-0.71	-0.67	-0.56	-0.65
Selenium	0.75	-0.80	-0.78	-0.67	-0.72
Selenate	-0.43	0.85	0.86	0.60	0.52
Selenite	0.72	-0.72	-0.68	-0.94	-0.82

- % Ash correlated strongest with arsenic and selenium
- Arsenic correlated strongest with the toxicity test endpoints
- Other correlations (to a lesser extent) to % ash and toxicity tests:
 - Barium, beryllium, boron, chromium, strontium, and vanadium

Remedial Goals – Sediment Toxicity Tests

Total arsenic and selenium concentrations associated with the IC₂₅ test endpoint were calculated

	Chironomid	Hyalella		
Average Arsenic IC ₂₅	29 mg/kg	41 mg/kg		
Arsenic PEC	33 mg/kg			
Average Selenium IC ₂₅	2.8 mg/kg	3.2 mg/kg		
Selenium PEC	No known consensus-based PEC			
Ash Content IC ₂₅	50% Ash			

© 2013 ARCADIS

Tree Swallows and Killdeer

- Tree swallows:
 - Egg collections
 - Nestling tissues
 - Population surveys

- Killdeer and tree swallows:
- Dietary uptake models

Tissue Monitoring Endpoints & Remedial Goals

Tissue Monitoring Endpoints

Tissue Monitoring Endpoints (TMEs) are target levels in diet biota tissue samples that will result in a hazard quotient (HQ) of 1 for the receptors of interest

The following TMEs were estimated:

- As & Se in larval mayfly based on the protection of the killdeer
- Se in adult mayfly based on the protection of the tree swallow

Inputs into the TME calculations are: receptor body weight, ingestion rates, toxicity reference values

Receptor	Metal	TME (mg/kg)
Killdeer	As	34 – 81
Mildeel	Se	2.3 - 5.0
Tree Swallow	Se	63 – 148

Remedial Goals - Killdeer

Constituent	Sediment Concentration (Csed) [a] (mg/kg)	Refined Toxicity Reference Value (TRV) Range [b] NOAEL LOAEL (mg/kg-BW-day)	Calculated Diet Tissue Monitoring Endpoint (TME) [c] low high (mg/kg)
Inorganics Arsenic Selenium	41 3	5.8 13 0.4 0.8	34 81 2.3 5.0

- [a] Maximum sediment remedial goals (RGs) based on effects to benthic invertebrates.
- [b] TRVs are from the Baseline Ecological Risk Assessment (ARCADIS 2012).
- [c] $TME = [(THQ \times TRV \times BW) (Cs \times IRsed \times SUF)] / (IRfd \times SUF)$

Assuming 100% of diet is invertebrates from source.

Receptor exposure parameters are from the Baseline Ecological Risk Assessment (ARCADIS 2012) and are presented below.

BW	kg	0.095
IRfd	kg/day	0.014
IRsed	kg/day	0.002
SUF		1
THQ		1
	IRfd IRsed SUF	IRfd kg/day IRsed kg/day SUF

Remedial Goals - Tree Swallows

	Toxicity I	Refined Toxicity Reference Value (TRV) Range [a]		ed Diet onitoring (TME) [b]
Constituent	NOAEL			high (kg)
Inorganics Selenium	0.4	0.7	1.6	2.8

- Arsenic was not determined to be a constituent of ecological concern (COEC).
- Selenium in sediment is below that of the site reference locations; therefore, the RG was set to equal 2x the reference sediment selenium concentration

Conclusions

Target sediment concentrations for future long-term monitoring programs

Remedial Goal Options				
Receptor / Exposure	Reference	Threshold	Remedial	
Pathway	Concentration	Range	Goal Range	
Benthic Invertebrates				
Arsenic concentration in sediment	8	29 - 41	29 - 41	
Selenium concentration in sediment	3	2.8 - 3.2	3.0 - 3.2	

US Army Engineer Research and Development Center fate & transport model predict sediment mixing and deposition likely results in:

- Average arsenic concentrations within the RG range in all areas of the river system in less than 12 years
- Average selenium concentrations within the RG range in all areas of the river system in less than 26 years

Conclusions & Recommendations

- Arsenic & toxicity test correlations similar (Wang et al. 2013 ET&C)
 - Significant effects when concentrations > Arsenic PEC
- RGs: Consensus-based rather than one value for one organism
- No consensus values? (i.e. Se and Se species) use site specific exposure-effects, multiple LOEs, and background concentration information

Acknowledgements

